Advances in Nucleic Acid Detection and Quantification
نویسندگان
چکیده
The last decade has seen many changes in molecular biology at the bench, as we have moved away from a primary goal of cataloguing genes andmRNA towards techniques that detect and quantify nucleic acid molecules even within single cells. With the invention of the polymerase chain reaction (PCR), a nucleic acid sequence could now be amplified to generate a large number of identical copies, and this launched a new era in genetic research. PCR has developed in parallel to fluorescent hybridization probing to provide low-,mediumand high-throughput detection methods. However, PCR and hybridization detection have significant drawbacks as long-term solutions for routine research and diagnostics assays. Thereforemany novelmethods are being developed independently, but as yet no one technique has emerged as a clear replacement for PCR, microarrays or even sequencing. In order to examine the technological horizon in this area, around 90 delegates assembled at Hinxton Hall, Cambridge, U.K. on 28 and 29 October 2008 for a Biochemical Society/Wellcome Trust Focused Meeting sponsored by Thermo Fisher Scientific and the British Library. The title of the meeting was ‘Advances in Nucleic Acid Detection and Quantification’, and the primary aim was to bring together scientists from different disciplines who nevertheless are trying to develop reliable methods for the quantification or detection of RNA and DNAmolecules. This meant that physical and organic chemists, microbial ecologists and clinicians appeared alongsidemolecular biologists. An introductory session on general nucleic acid detection technologies was initiated with a fascinating insight into single-molecule, singlecell hybridization from Professor Sir Edwin Southern. This served as an ideal base for sessions on single-cell molecular biology and an examination of current applications of emerging technology. This issue of Biochemical Society Transactions contains some of the papers prepared by speakers at the meeting, and highlights not only how PCR and microarrays are already being replaced, but also which methods are likely to replace
منابع مشابه
Evaluation of Nucleic Acid Sequence Based Amplification (NASBA) and Reverse Transcription Polymerase Chain Reaction for Detection of Coxsackievirus B3 in Cell Culture and Animal Tissue Samples
Enteroviruses are the causative agents of a number of diseases in humans. Group B coxsackieviruses are believed to be the most common viral agents responsible for human heart disease. Genomic data of enteroviruses has allowed developing new molecular approaches such as Nucleic Acid Sequence Based Amplification (NASBA) for detection of such viruses. In this study, coxsackievirus B3 (CVB3) was de...
متن کاملDesign of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study
The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...
متن کاملSpecific detection of Shigella sonnei by enzyme-linked aptamer sedimentation assay
Development of potent new anti-Shigella agents for rapid and specific detection and treatment is of great importance. Aptamers, nucleic acid oligomers capable of specific binding to a wide range of non-nucleic acid targets, may be of value for this purpose. In the present study, we used a Systematic Evolution of Ligands by Exponential enrichment (SELEX) process to select DNA aptamers that b...
متن کاملDesigning a Label Free Aptasensor for Detection of Methamphetamine
A label-free electrochemical nucleic acid aptasensor for the detection of methamphetamine (MA) by the immobilization of thiolated self-assembled DNA sequences on a gold nanoparticles-chitosan modified electrode is constructed. When MA was complexed specifically to the aptamer, the configuration of the nucleic acid aptamer switched to a locked structure and the interface of the biosensor changed...
متن کاملA New Sensitive Method for Detection of Viroids
Background and Aims: Viroids are smallest known plant pathogens and cause several economically significant diseases. Until recently, viroid detection relied mainly on biological tests and indexing. Today various diagnostic techniques such as nucleic acid hybridization, southern blot and reverse transcription coupled with polymerase chain reaction (RT-PCR) are being used for detection and diag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009